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ABSTRACT 1 
An innovative approach for arterial intersection performance measurement using vehicle 2 
trajectory data is proposed in this paper. The vehicle trajectories are first processed to 3 
extract the points representing the changing vehicle dynamics, which are named the 4 
“critical points” on the trajectory. The extraction technology can also be used as a data 5 
reduction method in on-vehicle devices to reduce the communication cost. A shockwave 6 
based method then uses the critical points to detect the signal timing, providing a basis 7 
for real time performance measurement. A cycle-by-cycle queue length estimation 8 
method is also proposed as a case study of signalized intersection performance 9 
measurement. The performance of this approach is tested both by simulation and NGSIM 10 
trajectory data. The results indicate that this trajectory based approach is promising. 11 

12 
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INTRODUCTION 1 
Arterial performance measurements are essential for advanced traffic management 2 
systems (ATMS) and advanced traveler information systems (ATIS). Although nearly 3 
40% of the nation’s vehicle miles traveled (VMT) occur on arterials, real-time arterial 4 
performance measurement systems are not as mature as their freeway counterparts. Two 5 
of the biggest challenges are: 1) arterial traffic conditions are more complicated than the 6 
ones on freeways because of the periodic interruptions from traffic signals, random 7 
friction from crossing traffic on minor streets, driveway related activities, etc; 2) the 8 
current traffic collection technologies deployed on arterials are not sufficient for 9 
measuring real-time operational performance(1).    10 

Given these challenges, recent research development is focused on two areas: 1) 11 
modeling the relationship performance measures (such as travel time, delay, queue 12 
length) and traffic flow as well as signal timing; and 2) developing new data collection 13 
technologies or using new data sources (1-3) . For example, in the first area, arterial 14 
travel time or delay is modeled as the function of occupancy, flow, speed and/or signal 15 
timing parameters. Usually, regression methods are used to calibrate these parameters to 16 
obtain the best goodness of fit (4-6). These models are usually site-specific, which limits 17 
the transferability for different prevailing traffic conditions, signal control and 18 
intersection geometries. One of the improved solutions proposed by Xie et al  (7) used 19 
calibration-free parameters, which decomposed the travel time into cruise time and signal 20 
delay.  Cruise time was the running time calculated using detected speed via inductive 21 
loop detectors and signal delay was calculated by a simplified Webster formula. 22 
Skabardonis and Geroliminis (8) proposed an analytical model using inductive loop 23 
detector data (aggregated in 20 or 30 seconds) and signal timing, which carefully 24 
calculates the delay as the sum of signal delay, queuing delay and oversaturation delay. 25 
An important improvement is that their model addressed the cases when the queue is 26 
longer than the distance from the loop detector to the stop bar. By the same token but 27 
with different methodologies, other works uses stochastic theories (9, 10), or artificial 28 
intelligence  (AI) methods (11, 12). Growing interests in the second area develop along 29 
with the emerging and advancement of traffic signal and probe technologies with which 30 
new data sources or high resolution data such as the timestamps for individual vehicle 31 
arrival (1, 3, 13), vehicle re-identification technologies (14-17), and probe data (18-23) 32 
become readily available.  33 

In most current studies, vehicle re-identification and probe data are only used to 34 
generate sample travel times between points which are subsequently modeled in a 35 
statistical sampling domain (18-21). The sample rate requirement was discussed (24). 36 
Some of the reasons for this type of application are: 1) general automatic vehicle 37 
identification (AVI) technologies, such as toll tag, automation license plate match, 38 
vehicle re-identification, can only provide travel times between two pre-defined points; 2) 39 
some automatic vehicle location (AVL) devices have relatively long sampling intervals, 40 
such as 1 minute, which makes it impossible to obtain vehicle trajectories from the 41 
scattered points.  42 

The development of traffic detection technologies makes the utilization of probe 43 
vehicle trajectory data possible. There are some studies about using trajectories of the 44 
total vehicle population for shockwave identification and analysis. The work of Lu and 45 
Skabardonis (25) studied the “local minima” in the speed domain of the trajectory and 46 
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used the “local minima” to analyze the back propagating shockwaves caused by 1 
congestion. Izadpanah et al (26) modeled the actual trajectories in the distance domain as 2 
a piece-linear line and defined “joint point” (major shockwave intersection points) at the 3 
trajectory. An iterative two-phase piecewise regression was employed to extract joint 4 
points from a trajectory. “Joint points” were used to detect the major shockwaves and 5 
their speed. There are also a few attempts of using vehicle trajectories for performance 6 
measurements (2, 27). The detailed trajectory data can provide more abundant and 7 
detailed traffic information than simple travel times between two ends of a pre-defined 8 
route, especially for the interrupted and discontinuous traffic flow on arterials. More 9 
importantly, congestion can be easily detected using trajectory data because unusually 10 
low speeds and frequent stops can be detected directly. Conversely, the number of 11 
available sampled travel times would drastically decrease due to a low flow rate and the 12 
responding time (assuming real time) will dramatically increase because the sampled 13 
travel will only be available after the probe vehicle finishes the pre-specified route. 14 
However, the main challenge of developing a trajectory-based model is how to convert 15 
the microscopic detections into macroscopic performance measurements, which is not as 16 
straightforward as sampling travel time. One trajectory only represents the individual 17 
behavior of one vehicle, which is often subject to actual situations encountered by the 18 
driver. Therefore the data are more volatile. On the contrary, arterial performance 19 
measures should be macroscopic and easily understood such as average travel time and 20 
maximum queue length. Recent attempts of performance measurements using probe 21 
trajectory include the research conducted by Claudel et al (27). In their study, the probe 22 
trajectory measurement was converted to density estimation using the Moskowitz 23 
function (28, 29) for freeway travel time estimation. The trajectories of probes on 24 
signalized arterials are more complicated than freeways because of the periodic 25 
turbulence due to signals and local friction. Comer and Cetin (18) studies the conditional 26 
probability distribution of the queue length at an isolated intersection given the locations 27 
of probe vehicles in the queue. They found that only the location of the last probe in the 28 
queue is necessary for queue length estimation, however, the assumption that the actual 29 
percentage of probe vehicles among the traffic stream is known limits the applications of 30 
this method.  31 

The existing work related to arterial trajectory data has not really led to practical 32 
applications of providing useful information such as queue length and travel time. This 33 
paper explores the feasibility of using the vehicle trajectory data for intersection 34 
performance measurement. The proposed approach first defined the critical points (CPs) 35 
on a trajectory which are able to capture the dynamics of the vehicular movement in a 36 
space-time diagram. A method was developed to extract the CPs and then shockwave 37 
based methods were used to detect signal timing and to estimate the cycle-by-cycle queue 38 
length. The theories were tested by numeric experiment using both simulation data and 39 
real trajectory data from NGSIM. The paper is concluded with an overview of the study 40 
and a discussion of future studies.  41 

 42 

METHODOLOGY 43 
Given the intersection and link geometric characteristics, the intent is to develop a real-44 
time intersection performance estimation model using vehicle trajectory data as the only 45 
model input. Figure 1 shows the overall building blocks for the methodology as well as 46 
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the relationship between them. The workflow can be described as follows: “Critical Point 1 
Extraction” module first processes the real-time trajectories to generate a series of CPs; 2 
the “Critical Points Filter” module selects part of the generated CPs for different 3 
purposes; using shockwave speed, the signal timing can be detected and determined; and 4 
finally the maximum queue length in a cycle can be estimated based on the detected end 5 
of queue.   6 

 7 
FIGURE 1 Methodology Flow Chart 8 

  9 
Modeling Trajectories 10 
The trajectory of a vehicle can be described as a series of points,{ }tx , where tx is a record 11 

of the vehicle at time t . tx  is a vector and describes the dynamics of vehicle at time t ; 12 

[ , , ]tx l v a= , where l is the location, v is the speed and a is the acceleration rate. l , v  and 13 

a represent the three dynamic features.  14 
The movements of vehicle are not totally random; drivers can be assumed rational 15 

and they fulfill three major tasks: 1) maintain a desired speed; 2) keep a safe distance 16 
from the lead vehicle; 3) follow the signal indication. For instance, when a vehicle travels 17 
in a platoon on a well coordinated corridor, it travels at a near constant speed and its 18 
trajectory is already known given the start point 0tx and the speed 0v , where 0t is the start 19 

of time. For a general case, the trajectory of a vehicle can be divided into several regimes 20 
which are either uniform motion or uniformly accelerated motion. Therefore, critical 21 
points (CPs),{ }c

tx , which are a subset of  { }tx can be defined. These CPs correspond to 22 

changing points on the borders of the movement regimes. Therefore, “non-critical” points 23 
become redundant and the trajectory { }tx  can be reduced to a set of CPs { }c

tx , as shown 24 

in Figure 2.  25 

Probe Trajectories

Critical Point 
Extraction

Critical Point Filter

Queue Length 
Estimation

Signal Timing 
Detection

Shockwave 
Analysis

End of Queue 
Detection
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 1 
FIGURE 2 CPs at a Trajectory (Paramics Simulation Data) 2 

( ,3 , , 3v a v stopc mph c fpss c mph=   = 3   =  See next section) 3 

 4 
For the purpose of traffic detection, CPs result from the changes in traffic 5 

conditions, significant and trivial. For example, the CP from slowing down to speeding 6 
up indicates the distance headway is increased, resulting from a queue clearance. Some 7 
CPs correspond to local traffic turbulence and . Hence, the features of the critical points 8 
can be used for signalized intersection performance estimation, which will be presented 9 
in detail in the following sections.   10 

In the above analysis, lane changing is not explicitly discussed. In fact, for 11 
simplicity, the vehicles are assumed to travel on a one-dimensional road. Note that the 12 
trajectory modeling approach can be easily extended to two-dimension by defining the 13 
current traveling lane as the fourth dynamic feature besides location, speed and 14 
acceleration rate.  15 

It is also interesting to treat the trajectories from the view of information science 16 
as a signal serial. A new CP extraction algorithm could be developed by borrowing data 17 
compression ideas. Converting { }tx to { }c

tx  is analogous to “data reduction”, which has 18 

another benefit for the real-time floating car data (FCD) collection by reducing data to be 19 
transmitted. If the onboard device has a CP extraction program running, the real-time 20 
data uploaded would be CPs. Therefore the communication cost is reduced. Obviously, 21 
this approach has advantages over the current probe measurement technologies which 22 
record at a fixed time interval.    23 

 24 
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Critical Points Extraction 1 
As analyzed above, the main idea of CP extraction is that the movement of a vehicle 2 
between two CPs is definitive and belongs to one of the two basic movements: 1) 3 
uniform motion; 2) uniformly accelerated motion (the acceleration rate is negative for 4 
deceleration motion). Therefore, a trajectory can be divided into several regimes with 5 
CPs as the boundaries. The extraction of a CP can be formulated as: 6 

Find max( )n , when Equation (1) or (2) is satisfied for all the:  7 

if i aa c< , 8 

 i vv v c− <  (1) 9 

or, if i aa c>= , 10 

 i aa a c− <  (2) 11 

Where v is the median speed of { }ix , vc is a threshold,  a is the median acceleration rate of 12 

{ }, 1, 2...ix i n= , ac is a threshold, 1x the previous CP or the first point on the trajectory. 13 

Eq. (1) represents the uniform motion and Eq. (2) represents uniformly accelerated 14 
motion.  15 
 In addition, considering the end of queue detection, it is necessary to treat 16 
stopping or very low speed as a special case; otherwise, the actual point when and where 17 
the vehicle joins the standing queue might be missed:  18 

 ,i v stopv c<  (3) 19 

The CP extraction algorithm can be summarized as: given the consecutive feeding 20 
of trajectory points, one of Eq. (1) and (2) will be applied according to whose condition is 21 
satisfied; however, if Eq. (3) satisfies, it overrides, continuing to search the following 22 
“stopping” segment and put down the first and last as CPs and then Eq. (1) and (2) apply 23 
again. 24 
 The selection of thresholds would not be affected by traffic or geometric 25 
conditions since CPs are intended to be the “change” points on a vehicle trajectory; that 26 
is, CPs are the associated directly with vehicle dynamics. As long as how detailed the 27 
dynamics needed to be known is determined, the thresholds are determined. The Travel 28 
Time Data Collection Handbook (30)mentions that “typically” less than 5 mph can be 29 
considered as stopping; it was found that lower threshold, could locate the point when the 30 
vehicle join the standing queue more accurately, which shall benefit the selection of Type 31 
II CP in the next section, As for the thresholds of speed and acceleration rate, vc  and ac , 32 

it is found that smaller values of thresholds would produce more CPs; however, the 33 
selected Type I, II and III CPs afterwards (in the next section) usually have very small 34 
shifts in the location and time. In the Numeric Experiment section, 3vc mph= , 35 

3ac fpss=  and , 3v stopc mph= . 36 
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An example is shown by Figure 2, where an entire trajectory is processed and the 1 
generated CPs are marked. As mentioned in the Introduction, there are a few studies in 2 
identifying and analyzing shockwaves using vehicle trajectories, such as the work by Lu 3 
and Skabardonis (25) and by Izadpanah et al. (26). The CP defined in this paper share 4 
similarities with  and  “joint points” in but also have significant differences:  5 

 6 
1. Assumptions are different 7 

The CP in this paper is used to extract the movement changing at the trajectory while 8 
“joint point” and “local minima” are for detecting “major shockwaves”. It can almost 9 
be certain that for arterials, the “joint points” are a subset of the CPs for the same 10 
trajectory. In a word, CP is for a sampled probe approach while “local minima” and 11 
“joint points” are not.  12 

2. Extraction algorithms are different 13 
Given the different assumptions, the CP extraction algorithm proposed in this paper is 14 
simple for real-time implementation with lower computational cost. “Local minima” 15 
method searches the local minimal speed points within a time window and  “joint 16 
point” method uses an iterative two-phase piecewise regression model for the location 17 
domain.  Although generated CPs tend to be noisier, setting proper thresholds and a 18 
well designed “Selection of Critical Points” module can reduce the harmful noise to a 19 
minimum. 20 

3. Potential applications are different 21 
Our algorithm can also be used as a data reduction method in the onboard GPS device 22 
to reduce the communication cost without cost of traffic detection. In addition, 23 
although CPs tend be noisier, they may also include useful details about how speed 24 
changes which could be valuable for other researches such as emission and safety 25 
studies.  26 

 27 
 28 
 29 

Critical Points Filter for Various Purposes 30 
For different applications, different parts of the extracted CPs should be used. In other 31 
words, a filter should be applied to choose the appropriate CPs. For example, when 32 
critical points are used for signal detection, only the critical points which result from 33 
signal changes should be used.  34 

Figure 3 demonstrates the three types of CPs which will be referred in the 35 
following discussion. Type I is defined as the CP which is the beginning point of a 36 
deceleration regime caused by signal light turning to red; Type II is defined as the CP 37 
which is the point when the vehicle slows down and joins the queue; Type III is defined 38 
as the CP which is the beginning point of an acceleration regime caused by signal light 39 
turning to green. 40 
 41 
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 1 
FIGURE 3 Shockwaves and Critical Points (CP) 2 

 3 
The three types of CPs are selected from the whole extracted CPs by the features 4 

of CPs. These features are: 1) the time difference; and 2) the speed difference. The 5 
algorithm can be described as: 6 

(a) Order all the CPs from this vehicle chronologically and find the min speed 7 
CPs (index 1 2, ... mj j j ) with speeds less than ,v stopc ; if no such CP exist, this 8 

vehicle is not stopped by a standing queue, and Type II and Type III CPs do 9 
not exist in the current trajectory.  10 

(b) Let 1p j= , find the first CP whose speed is less than its immediate previous 11 

CP with index of i ; if the speed of CP i is higher than all the CPs from i  to j , 12 

i is the Type I CP and go to (c); if not, throw away the CP from first to i , do 13 
this step again; 14 

(c) CP mj is the Type II CP; CP 1mj + is the Type III CP. 15 

For simplicity, the above algorithm does not consider the case that the probe 16 
could not pass the intersection within a cycle. In that case, the trajectory has one than one 17 
stable stopping segments and the time differences (can be defined as center to center time 18 
difference) between them are comparable to the cycle length. One needs to divide the 19 
trajectory into segments using the max speed points between two consecutive stopping 20 
segments and apply the CP extract and filtering algorithms for each segment.  21 

Figure 4 shows the selected Type I, II and II CPs from the generated CPs.  22 

Time

Distance

Green Red Green

Shockwave v1

Shockwave v2

CP Type I
 CP Type II

  CP Type III
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 1 
FIGURE 4 CPs and the Selected CPs for Further Applications at a Trajectory 2 

(Paramics Simulation Data) 3 
 4 

Signal Timing Detection 5 
Signal timing is the major factor which affects the travel time on signalized arterials. 6 
Most studies related to arterial travel times use signal timing as input for their models (6, 7 
7, 31, 32). However, real-time signal timing is not always available for online or even 8 
offline operations. According to the 2007 National Traffic Signal Report Card (33), 9 
“Traffic Monitoring and Data Collection” received a score of F and “almost half of 10 
agencies (43 percent) reported having little to no regular, ongoing program for collecting 11 
and analyzing traffic data for signal timing.” Ban el al. explored the methods to derive 12 
signal timing using the delay measurements by Virtual Trip Line (VTL) technology based 13 
on GPS-equipped cell phones(34). Using sampled travel times, they found that a 40% 14 
penetration rate of probe was needed in order to obtain reliable signal timing detection. 15 
Below, we are going to demonstrate that the use of trajectory data can help detect signal 16 
timing data with a lower sample rate than only using sampled travel times.  17 

The formation and dissipation of the queue before a stop-bar at signal changes 18 
cause vehicle movement changes which are then extracted as CPs. The time of the 19 
shockwaves caused by signal changes traveling to a vehicle is essentially the 20 
corresponding CP’s timestamp after the traffic light change. That being said, the signal 21 
timing parameters such as cycle length and green time can be obtained.  22 

The fundamental and most widely used traffic flow model is the Lighthill- 23 
Whitham-Richards (LWR) model (35-37). The solution of LWR model is based on the 24 
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conservation equation of the traffic flow and a function of speed, flow (or density).  The 1 
propagation speed of a shockwave is calculated as:     2 

 u d

u d

q qv
k k

−
=

−
 (4) 3 

Where, 4 
,u dq q  are the flow rate for upstream and downstream, respectively, and  5 

,u dk k  are the density for upstream and downstream, respectively. 6 

 7 
As demonstrated in Figure 3 and 4, since the location and time of CPs are known 8 

from the trajectories, the start times of green time and red time can be detected as long as 9 
the shockwaves speeds can be estimated.  10 

After the start of green, the queue accumulated before the stop bar starts to 11 
discharge. Therefore, the start time of the green light can be calculated as: 12 

 
*

* 3
3

CP
g CP

dis

LT T
v

= −  (5) 13 

Where, 14 
*

3CPT is the adjusted time stamp of the Type III CP, ( *
3 3 3 3/CP CP CP CPT T v a= − , 3CPT is the 15 

time stamp of the Type III CP, 3 3,CP CPv a are the speed and acceleration rate of this Type 16 

III CP), 17 
*

3CPL  is the adjusted distance of a Type III CP to the stop-bar ( * 2
3 3 3 3/ 2CP CP CP CPL L v a= + ,18 

3CPL is the time stamp of the Type III CP), and 19 

disv is the queue discharge shock wave speed. 20 

   21 
 At the beginning of a green light, assume there is no queue spillback at the 22 

downstream intersection, the queue discharges at the saturation flow rate. The queue 23 
discharge shock wave speed can be estimated as: 24 

 0s
dis

m j

qv
k k

−
=

−
 (6) 25 

Where 26 

sq is the saturation flow rate, 27 

mk is the saturation flow density, and 28 

jk is the jam density 29 

 In the Numeric Experiment, 15disv mph= was used.  30 

 31 
After the start of red, traffic is stopped before the stop bar and the queue is 32 

formed. Therefore, the start time of the red light can be obtained by: 33 
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*

* 1
1

CP
r CP

form

LT T
v

= −  (7) 1 

Where 2 
*

1CPT is the adjusted time stamp of the Type I CP, ( *
1 1 1/CP CP v CPT T c a= − , 1CPT is the time 3 

stamp of the Type I CP, 1CPa are the speed and acceleration rate of this Type I CP), 4 
*

1CPL  is adjusted distance of Type I CP to stop-bar, *
1 1 1 1(2 ) / 2CP CP CP v v CPL L v c c a= + + ,5 

1CPv  is the speed of the Type I CP, 1CPL is the time stamp of the Type I CP), and 6 

formv is the queue formation shock wave speed. 7 

 8 
The queue formation shockwave can be estimated as: 9 

 0 u
form

j u

qv
k k

−
=

−
 (8) 10 

Where 11 

uq is the upstream arrival flow rate, 12 

uk  is the upstream arrival density, and  13 

jk is the jam density. 14 

 15 
The problem now becomes how to get uq and uk . Using the basic flow-speed-16 

density relationship q kv= , either uq or uk  can be determined by the other because the 17 

inflow speed can be estimated by the vehicle speed before deceleration. There is no direct 18 

way to estimate uk or uq , but the average density 1CPk  from the stop bar to the Type I CP 19 

can be estimated: assuming lane changing is limited when vehicles begin to slow and join 20 
the queue, the number of vehicles before the probe vehicle can be accurately estimated 21 
from dividing the distance from the Type II CP to the stop-bar by:  22 

 2
1

1

CP
CP j

CP

Lk k
L

=  (9) 23 

Where 24 

2CPL  is the distance of the Type II CP from the stop-bar. 25 

 26 
 Therefore, Equation (8) is re-written and approximated as: 27 

 1 1

1 21 1

0 /
/ 1/ 1

u u CP CP
form

CP CPj CP j CP

q q k vv
L Lk k k k

−
= = − ≈ −

−− −
 (10) 28 

Where  29 

1CPv is the speed of the Type I CP. 30 
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Dynamic Queue Length Estimation 1 
End of the Queue Detection  2 
The detection of the end of the queue means the detection of an instantaneous queue 3 
length. Some CPs correspond to the time and location when the vehicle joins the queue. 4 
As discussed, Type II CPs are used.  5 
 6 
Maximum Queue Length Estimation during a Cycle 7 
The progress of queue formation and dissipation is greatly affected by the arrival pattern. 8 
For an isolated intersection, the arrival flow rate within a cycle can be assumed to be 9 
constant. Therefore, the queue length increasing rate can be calculated using the detected 10 
end of queue and its timestamp. Given the already detected signal timing, the maximum 11 
queue length can be calculated as:  12 

 
( )

( )
s u g r

q
j s u

q q T T
L

k q q
−

=
−

 (11) 13 

 The upstream arrival rate uq can be estimated as: 14 

 2

2( )
CP

u
j CP r

Lq
k T T

=
−

 (12) 15 

Where,  16 

2CPL is the distance from the Type II CP to the stop-bar, and 17 

2CPT is the timestamp of the Type II CP. 18 

 19 
Equation (11) is used for cases without an initial queue. Considering there are 20 

stopped vehicles from the previous cycle, initial queue should be detected first and then 21 
the total queue length can be estimated. The following formula can help to detect initial 22 
queues: 23 
 2 2( )s CP r CP jq T T L k− >  (13) 24 

If Equation (13) does not satisfy, the initial queue is detected and the length of the 25 
initial queue can be estimated by: 26 
 0 2 2( ) /q CP CP r s jL L T T q k= − −  (14) 27 

For an intersection affected by an upstream signal, such as coordination, the 28 
arrival pattern varies within a cycle because of the “gating effect”. The flow pattern from 29 
upstream crossing streets may be significantly different from the main direction. The 30 
resulting queue formation process is a complex process. As an approximation, the queue 31 
increase process is modeled as a piecewise linear line. More than one Type II CPs are 32 
needed for this case. Assume there are 1n − available Type II CPs, and use the point of 33 
start of red as additional point (with the distance to stopbar is zero), order them 34 
chronologically as a list of points on the queue length and time plane.  35 
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The average queue increase rate between each two consecutive points can be 1 
calculated as: 2 

 2, 1 2,

2, 1 2,

CP i CP i
i

CP i CP i

L L
q

T T
+

+

−
=

−
 (15) 3 

Where  4 
i is the index, {1, 2,..., }i n∈ , 5 

2,CP iL is the distance from the ith Type II CP  to the stop-bar, and 6 

 2,CP iT  is the timestamp of the ith Type II CP. 7 

 Then several queue length estimates can be obtained: 8 
 9 

 
max 2, max

2, 1

min 2,

CP n inflow

last CP n n inflow

CP n

L L q t
L L q t

L L
−

= +
= +

=
 (16) 10 

Where 11 

max min, , lastL L L are the three queue length estimates which use the max queue increase rate, 12 

the last available queue increase rate, and no queue increase, respectively, 13 

max max( )iq q= , and  14 

,g nt is the time duration from the nth Type II CP to the green light shockwave, and is 15 

calculated by: 2,
, 2,

CP n
g n g CP n

dis

L
t t T

v
= + −  (see Figure (5), and note that the line of the queue 16 

dissipation shockwave is: ( )dis gy v x t= − ).  17 

 18 
FIGURE 5 Queue Formation in Various Arrival Rates 19 

 20 

TimeGreen Red Green

CP Type II 

Queue Length

 L max
L last
L min

tr tg

y=Vdis(x-tg)
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 The queue length of the cycle can be estimated as a weighted average: 1 
 1 max 2 3 minq lastL w L w L w L= + +  (17) 2 

Where 3 

1 2 3, ,w w w are the weights and 1 2 3 1 2 31; , , [0,1]w w w w w w+ + =  ∈  . In the Numeric 4 

Experiment,  2 3w w= and 1 , ,max ,/ ( 2 )g n g g nw t t t= +  ( ,maxgt is the time duration from the end 5 

Type II CP on the segment where the max queue increase rate is achieved.) 6 
Note that the proposed models above are based on the critical points on a single 7 

trajectory excepted queue length estimation under various arrival rates, which implies 8 
low sample rate requirement. Model improvement for various sample rates and sensitivity 9 
analysis of the sample rate impact to models are beyond the scope of this paper, and are 10 
part of further work.     11 

 12 
NUMERICAL EXPERIMENT 13 
 14 
Data Source 15 
There are two types of data used in this paper. One is a simulation network by Paramics 16 
(Figure 6) and the other is a trajectory data set from NGSIM((38)). The Paramics network 17 
is built as follows: 18 

 19 
FIGURE 6 Paramics Simulation Network 20 

 21 
The traffic on the link from Intersection 1 to Intersection 2 are studied. 22 

Intersection 1 is the upstream intersection in the case of coordination. There are one 23 
exclusive through lane on the study direction and speed limit is 40 mph. The cycle length 24 
of two intersections is 80 seconds and the green time for the EB traffic is 45 seconds. For 25 
the isolated intersection case, EB traffic do not stop at Intersection 1; for coordinated 26 
mode, the offset of the two signals is 17 seconds which is the free flow travel time. The 27 
demand flow rates have two levels, one is 800 veh/hr/ln for non-peak and the other is 28 
1800 veh/hr/ln for peak hour.  29 

The NGSIM (39) data set used in this study are trajectory data on the southbound 30 
link from 11th St to 10th St on Peachtree St. from 4 PM to 4:15 PM. The signal is 31 
coordinated with upstream intersections with a cycle length of 100 seconds. NGSIM has 32 
two sets of arterial data, Peachtree and Lankershim. The Lankershim set has more 33 
measurement errors than the Peachtree set (40) , therefore the Peachtree set is chosen.   34 
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Experiment Results 1 
Signal Timing Detection 2 
The signal detection results are displayed in Figure 7 and 8. Figure 7 shows the results for 3 
the case of the isolated intersection. Figure 8 shows the results for the case of coordinated 4 
intersections.  5 

 6 
(a) Signal Detection for an Isolated Intersection at Non-Peak Hour 7 

 8 
(b) Signal Detection for Isolated Intersection at Peak Hour 9 

 10 
FIGURE 7 Signal Detection for an Isolated Intersection 11 
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Figure 7 shows the results using 15 consecutive cycles’ data for each traffic 1 
demand case. The results for the isolated-intersection case are promising. The detected 2 
start times of red and green are quite accurate. The detection of the start of green has 3 
lower errors because the shockwave speed of queue discharging is nearly constant and 4 
traffic in queue discharging usually has fewer disturbances, while the queue formation 5 
shockwave varies more and traffic is “unstable far away”(41). For the peak hour case, 6 
errors distributes similarly to non-peak hour except some “outliers”. Further investigation 7 
shows that these “outliers” were from the end of long queues (close to the upstream 8 
intersection) which the traffic is unstable and has more disturbances. By observation, 9 
sometime the shockwaves caused by signal were concealed by the local disturbances and 10 
even human eye has a big difficulty in distinguishing them.  11 
 Figure 8 shows the results for the case of a coordinated intersection. Figure 8 (a) 12 
and (b) shows the results using 15 consecutive cycle’s data for each traffic demand case 13 
and Figure 8 (c) using 10 consecutive cycle’s data by NGSIM Figure 8 (a) shows the 14 
results for a non-peak hour case when the coordination is working well. One thing worth 15 
noticing is that there were two cycles when all the vehicles went through the intersection 16 
without significantly slowing down. Hence no available CPs for signal detection were 17 
extracted and therefore the actual timing for the two cycle could not be detected.   18 

The overall results indicate that this method gives relatively consistent output for 19 
signal detection.  20 
 21 

 22 
(a) Signal Detection for Coordinated Intersection at Non-Peak Hour 23 
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 1 
(b) Signal Detection for Coordinated Intersection at Peak Hour 2 

 3 
(c) Signal detection using NGSIM data 4 

 5 
FIGURE 8 Detection of Signal Timing for a Coordinated Intersection 6 

 7 
Maximum Queue Length Estimation 8 
The performance of the maximum queue length estimation is measured by Mean 9 
Absolute Percentage Error (MAPE) which is calculated as: 10 
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1

1 100%
n

i

GroundTrue EstimationMAPE
n GroundTrue=

−
= ×∑  (18)  1 

Where, 2 
n  is the total sample size. 3 
 4 

The ground truth queue lengths were collected by observing the overall vehicle 5 
trajectories. For the isolated intersection cases, one trajectory was randomly picked for 6 
estimation in each cycle. For the coordinated intersection cases as well as NGSIM, three 7 
trajectories were randomly picked in each cycle. For each case, experiments were run for 8 
20 times. Table 1 gives the results.  9 

 10 
TABLE 1 MAPE of Queue Length Estimation 11 

  # of Cycles MAPE 

SIMU 

Isolated (non-peak)  12  18.41% 

Isolated (peak)  12  19.56% 

coordinated (non-peak)  12  22.43% 

coordinated (peak)  12  21.07% 

NGSIM 
Lane 1*  7 23.35% 

Lane 2** 7 24.16%  

      * Lane 1 is the lane next to median except left turn lane. 12 
      ** Lane2 is the lane on the right. 13 

 14 
 Liu et al. (13) proposed a real-time queue length estimation for congested 15 
signalized intersection using the event-based data by SMART-SIGNAL system and the 16 
reported MAPE is 14.93%. The results here are comparable to theirs, considering the 17 
differences of data resolution.   , Since the queue estimation model here is straightforward 18 
and serves as a prototype, we expect improved results in future work.  19 
  20 

CONCLUSION AND FUTURE STUDY 21 
An innovative approach for arterial intersection performance measurement using vehicle 22 
trajectory data is proposed in this paper. To address the challenge of converting the 23 
microscopic detections into macroscopic performance measurements, a “critical point” 24 
(CP) extraction method is presented. CPs can capture the dynamics of the vehicle and the 25 
extraction algorithm has the potential ability for reducing communication cost for 26 
onboard GPS devices. Since the extracted CPs represent all the major and minor 27 
turbulence and frictions of the vehicle, a CP feature based selection method chooses 28 
different types of CPs for difference applications. Using the detected instantaneous end of 29 
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queue, cycle-by-cycle queue length estimation methods are proposed for both isolated 1 
intersections and intersections with upstream signal impacts.  The models are evaluated 2 
by simulated data and the NGSIM trajectory data. The signal timing detection is 3 
relatively accurate except that there are a few start-of-red detection outliers resulting from 4 
stop-and-go flow under oversaturation conditions. The performance of queue length 5 
estimation is also acceptable.    6 

Future study will include: 1) the improvement of the CP extraction algorithm and 7 
CP selection design to address the stop-and-go flow; 2) the sensitivity analysis of the 8 
probe data error and sample rate for estimation performance; 3) the adoption of nonlinear 9 
shockwave models which are suitable for arterial traffic flow and are able to support CP 10 
extraction and selection. 11 
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